智能視覺是人工智能的大門,如果不打開這扇大門,就沒有辦法深入研究人工智能。人的大腦皮層70%的活動都在處理視覺信息,視覺信息與聽覺信息、觸覺信息相比要重要得多。同理,如果沒有視覺信息的話,人工智能只是一個做符號推理的空架子。那么,智能視覺將通過哪些形式影響人工智能呢?
1、智能設備在視覺上開戰(zhàn)
隨著智能設備的系統(tǒng)越來越接近“人性化”即人工智能,它將更需要通過視覺途徑來學習和處理其他數(shù)據(jù),也因此,智能視覺技術爭奪戰(zhàn)即將打響。例如,亞馬遜最近為其以Alexa作為語音助手的智能設備Echo,添加了一臺攝像頭,而Google(Lens)和Facebook最近又發(fā)布了新的增強現(xiàn)實研究的聲明。
2、智能視覺引領無人駕駛
我們經(jīng)常會看到這樣的爭論:無人駕駛汽車是否需要激光雷達?僅依賴智能視覺的解決方案足夠嗎?對此,業(yè)界普遍認為,汽車不僅僅需要智能視覺傳感器平臺——相機,也需要比GPS更精確的LiDAR和高精度無線電導航,因為LiDAR和雷達通過范圍和角度來精確定位周圍環(huán)境中的實際物體,而智能視覺解決方案則應用深度學習算法運行圖像,取得預測的結果。然而,光學解決方案能在實際生活中識別某個地方的效果更好。
3、智能視覺是優(yōu)秀的“學習途徑”
機器不僅僅通過神經(jīng)網(wǎng)絡和機器學習來學習,他們還通過其它方法來學會識別和分析他們周圍的世界。Google的科學家展示過一種技術:通過將屋頂上的直線或紫色水果中所存在的偏差放大來判斷判定舊房子的結構是否存在問題或者是某個西紅柿是否比其他的成熟的更好、更飽滿。這看似很簡單,卻是智能視覺的優(yōu)秀“教學”案例。
4、智能視覺優(yōu)化醫(yī)療診斷
病理學家平均每天有500張幻燈片要處理,而每張幻燈片又包含數(shù)十萬個需要分析的單個細胞,人類無法像計算機一樣高效的工作,醫(yī)生很容易遺漏癌細胞,造成誤判。智能視覺技術可以恰當?shù)慕鉀Q這個問題:病理學家查看他們所熟悉的數(shù)據(jù),與那些由智能視覺系統(tǒng)處理過的圖像結合,基本上就可以確定癌癥的區(qū)域,然后醫(yī)生通過專門研究這些區(qū)域作出診斷。以乳腺癌研究為例,如果沒有智能視覺技術,活檢只有85%的準確率,而使用智能視覺作為輔助,錯誤率將下降到只有5%。5、智能視覺降低人工智能門檻