借助車載計(jì)算機(jī)、傳感器和攝像頭,大約一百萬個(gè)資產(chǎn)正在將數(shù)據(jù)傳輸?shù)焦?,以?shí)現(xiàn)大規(guī)模的高級物聯(lián)網(wǎng)分析,這些數(shù)據(jù)包括時(shí)間序列數(shù)據(jù),機(jī)器運(yùn)行狀況報(bào)警,燃油使用量,GPS定位和操作員的使用情況。
卡特彼勒的物聯(lián)網(wǎng)分析技術(shù)借助數(shù)據(jù),可以以更低的總成本、更高的生產(chǎn)率和安全性,更低的維護(hù)成本為用戶創(chuàng)造價(jià)值。使用分析可以了解何時(shí)需要維修和更換機(jī)器以及設(shè)備部件,如何高效的操作以提高產(chǎn)量,降低運(yùn)營成本,如何延長設(shè)備使用壽命等等。
那么,物聯(lián)網(wǎng)分析的未來是什么?先看看物聯(lián)網(wǎng)領(lǐng)域的趨勢和挑戰(zhàn)。
趨勢:數(shù)據(jù)量不斷增加。
挑戰(zhàn):可用數(shù)據(jù)的質(zhì)量。
工業(yè)物聯(lián)網(wǎng)是用于分析的數(shù)據(jù)生成引擎:一臺大型現(xiàn)代化卡車擁有100多個(gè)傳感器,每個(gè)傳感器以每秒一次或更快的頻率產(chǎn)生數(shù)據(jù)并處理。分析人員在處理如此大量的數(shù)據(jù)時(shí),可能遇到質(zhì)量問題,如缺少批次信息、缺少通道、傳感器故障,錯誤的提取信息,數(shù)據(jù)抽取傳輸裝在過程中的故障等問題。這些問題導(dǎo)致數(shù)據(jù)科學(xué)家將更多的時(shí)間浪費(fèi)在數(shù)據(jù)質(zhì)量控制而非花在數(shù)據(jù)分析上。
行動:投資于數(shù)據(jù)質(zhì)量監(jiān)控和改進(jìn)。這將帶來長期的收益,隨著數(shù)據(jù)量的不斷增加,以后解決數(shù)據(jù)質(zhì)量的問題將越來越困難。
趨勢:“監(jiān)督”分析模型將成為主流。
挑戰(zhàn):缺乏質(zhì)量的基本準(zhǔn)則。
監(jiān)督模型可以更直接的使用,并帶有準(zhǔn)確的估計(jì)值,因此作為首選模型。但是,在決絕包括真是數(shù)據(jù)質(zhì)量在內(nèi)的數(shù)據(jù)質(zhì)量問題之間,受監(jiān)督模型很難實(shí)現(xiàn)高精度。
行動:專注于”無監(jiān)督“模型,但要建立與監(jiān)督模型兼容的基礎(chǔ)架構(gòu),并繼續(xù)提高數(shù)據(jù)質(zhì)量。隨著建立基礎(chǔ)設(shè)施以自動標(biāo)記數(shù)據(jù),向監(jiān)督模型過渡可能而逐漸發(fā)生。
趨勢:自動化分析。
挑戰(zhàn):由于人工參與,缺乏算法透明性,限制了可伸縮性。
物聯(lián)網(wǎng)數(shù)據(jù)分析的最終目標(biāo)是完全自動化執(zhí)行任務(wù),使人類專家可以將精力集中在最復(fù)雜的問題上。這是最有效和最具有成本效益的方法。但是,大多數(shù)機(jī)器學(xué)習(xí)算法都是黑盒算法,做出的決策通常很難解釋和新人。
行動:投資于人員培訓(xùn),教育和建立對所有模型的信任。另外投資可為人類用戶解釋模型的解決方案。模型的響應(yīng)越透明,就越可能實(shí)現(xiàn)分析自動化。
趨勢:遷移到云。
挑戰(zhàn):數(shù)據(jù)連接問題,分析決策延遲和基礎(chǔ)架構(gòu)成本。
行動:在多數(shù)情況下,數(shù)據(jù)、分析和其他服務(wù)遷移到云是很有意義的,云提供了可伸縮性、和按需付費(fèi)的方法,減少了費(fèi)用支出。同時(shí)也帶來了數(shù)據(jù)延遲問題,因而某些情況下依靠云的實(shí)時(shí)物聯(lián)網(wǎng)數(shù)據(jù)分析是不可能的。
行動:規(guī)劃靈活、集成且可靠的端到端分析解決方案,覆蓋從邊緣分析到云分析。這種解決方案兼顧連接性、延遲、成本。
趨勢:從數(shù)據(jù)批處理向流式傳輸和實(shí)時(shí)分析的轉(zhuǎn)變。
挑戰(zhàn):更改現(xiàn)有基礎(chǔ)架構(gòu)的復(fù)雜性
分析的總體趨勢是從批處理數(shù)據(jù)轉(zhuǎn)化為實(shí)時(shí)處理,這種轉(zhuǎn)變成本很高。
行動:為未來計(jì)劃,這種轉(zhuǎn)變是未來趨勢,所以必須盡早過渡。客戶需求、技術(shù)進(jìn)步和競爭壓力最終將支持更多的流式應(yīng)用。
趨勢:物聯(lián)網(wǎng)數(shù)據(jù)無處不在。
挑戰(zhàn):數(shù)據(jù)IP,所有權(quán)、安全性和治理。
將所有物聯(lián)網(wǎng)數(shù)據(jù)集中在一個(gè)地方,并為所有團(tuán)隊(duì)提供數(shù)據(jù)的訪問權(quán)限,可能式加快產(chǎn)品和技術(shù)開發(fā),降低成本,創(chuàng)新并改善協(xié)作的最佳途徑。但是,將出現(xiàn)新的數(shù)據(jù)問題:誰擁有哪些數(shù)據(jù),誰可以訪問哪些數(shù)據(jù),是否有權(quán)使用數(shù)據(jù),如何處理高度機(jī)密的數(shù)據(jù)。這些需要法律法規(guī)、行業(yè)標(biāo)準(zhǔn)的不斷完善,才能支持物聯(lián)網(wǎng)數(shù)據(jù)的使用。
行動:建立強(qiáng)大的數(shù)據(jù)治理和安全流程,盡可能多的利用根云服務(wù)商提供的服務(wù)。