“大數(shù)據(jù)”時代到來了嗎?
潮流是一股可笑又可敬的力量:今天,如果打開任何媒體,要是不提“大數(shù)據(jù)”,恐怕都不好意思出版。這股潮流,鋪天蓋地,連國家領導人都不例外。問題在于:為什么人人言必稱大數(shù)據(jù)?
數(shù)據(jù)的價值,隨著數(shù)據(jù)量的幾何級數(shù)增長,已經(jīng)不再能夠通過傳統(tǒng)的圖表得以顯現(xiàn),這正是為什么商業(yè)智能還沒來得及流行,便已被“數(shù)據(jù)分析”擠下舞臺。因為,價值隱藏在數(shù)據(jù)中,需要數(shù)據(jù)分析方可釋放這些價值。
數(shù)據(jù)分析能力的高低,決定了價值發(fā)現(xiàn)過程的好壞與成敗??梢哉f,沒有數(shù)據(jù)分析,“大數(shù)據(jù)”只是一堆IT庫存,成本高而收益為零。但是國內(nèi)熱潮的“大數(shù)據(jù)”概念,目前仍然停留在數(shù)據(jù)收集、整理、存儲和簡單報表等幾個初級階段。能夠?qū)Υ髷?shù)據(jù)進行基本分析和運用的,只有少數(shù)幾個行業(yè)的少數(shù)企業(yè)。關于這一點,我們可以通過谷歌搜索結(jié)果來簡單揭示這一現(xiàn)狀的:
挑選四個關鍵詞,并且分別搜索,并且對搜索結(jié)果計數(shù)用JMP數(shù)據(jù)分析軟件進行制圖:
很明顯,英文世界里,“big data”的搜索結(jié)果計數(shù)比中文世界里的“大數(shù)據(jù)”搜索結(jié)果計數(shù)要多了不少; 而“analytics”(分析)的搜索量不僅僅高于“big data”,更是遠遠高于“分析”在中文世界里的搜索結(jié)果,大概是169倍!
這個結(jié)果,盡管不能100%還原中國業(yè)界對“大數(shù)據(jù)“和”分析“的重視程度,但仍然可以揭示一個起碼的事實:作為大數(shù)據(jù)概念源頭的西方國家尤其是美國業(yè)界對于”分析”的重視,遠甚于中國業(yè)界對分析的關注。
這個來自谷歌搜索的簡單分析結(jié)果,和我們對于中國企業(yè)大數(shù)據(jù)實施現(xiàn)狀的理解不謀而合。
中國式大數(shù)據(jù)與分析的現(xiàn)狀
所謂”大數(shù)據(jù)分析“,其和”小數(shù)據(jù)分析“的唯一差別在于數(shù)據(jù)量以及數(shù)據(jù)量帶來的對于數(shù)據(jù)存儲、查詢及分析吞吐量的要求。本質(zhì)上,”大數(shù)據(jù)分析“仍然需要通過數(shù)據(jù)分析來發(fā)現(xiàn)現(xiàn)狀,找到導致現(xiàn)狀的根源要素,并且通過模型與預測分析技術來對改善進行預測與優(yōu)化,并且實現(xiàn)企業(yè)運營各個領域的持續(xù)改善與創(chuàng)新。要談”大數(shù)據(jù)分析”的中國現(xiàn)狀,首先必須深入了解”數(shù)據(jù)分析“在國內(nèi)的應用情況。
國內(nèi)企業(yè),不論是國企還是民企,真正在業(yè)務決策中以數(shù)據(jù)分析結(jié)果為依據(jù)的,主要集中在銀行,保險,電信和電商等幾個行業(yè)。以IT預算最充沛,人員能力最強的銀行為例,目前主要是大型銀行在導入數(shù)據(jù)分析。中小銀行尚在觀望與學習階段,人員與能力建設正在起步階段。數(shù)據(jù)分析的應用范圍主要集中在信用風險、流程優(yōu)化、市場營銷、成本與預算等幾個方面,深度尚可,但廣度一般,尚未擴充到運營管理的所有領域。
而談到“大數(shù)據(jù)”或者數(shù)據(jù)倉庫,上述行業(yè)中的絕大多數(shù)企業(yè)早已實施了各種數(shù)據(jù)倉庫,以管理數(shù)據(jù)。這種買藥再看病的模式,完全本末倒置。數(shù)據(jù)倉庫與數(shù)據(jù)庫不一樣,其使命就是為了分析而存在的。沒有分析,倉庫何用之有? 四大行之一的某大型國有銀行,90年代末期就開始花費好幾億元IT預算,建設“數(shù)據(jù)大集中”項目,受該行影響,其他國內(nèi)銀行掀起了一股數(shù)據(jù)集中的熱潮。而當時連商業(yè)智能還是個尚未傳入中國IT概念,更遑論數(shù)據(jù)分析了。15年過去了,這些被集中的數(shù)據(jù),還在么?
至于支撐起我國龐大GDP的制造業(yè)、建筑業(yè)和貿(mào)易業(yè),在運用數(shù)據(jù)分析進行業(yè)務決策方面,則尚未見規(guī)模。其IT開支仍然主要集中在基礎架構(gòu)與流程化的軟件套件領域(如ERP,CRM,HRM, SCM等),部分企業(yè)開始導入商業(yè)智能(報表、制圖、管理駕駛艙),而數(shù)據(jù)分析應用遠遠沒有進入規(guī)模發(fā)展階段。以我國制造業(yè)企業(yè)為例,從五、六年前開始熱炒“六西格瑪”、”全面質(zhì)量管理“,”精益生產(chǎn)“,盡管這些舉措對中國制造、中國創(chuàng)造等帶來本質(zhì)變化尚需時日,但是就提升企業(yè)決策能力和管理水平而言,這些舉措的的確起到了一定的作用,對于中國企業(yè)從拍腦袋到用數(shù)據(jù)決策這一本質(zhì)轉(zhuǎn)變打下了一個基礎。
這一現(xiàn)狀的原因,我們認為主要體現(xiàn)在如下幾個方面:
1.企業(yè)的權力來源
數(shù)據(jù)分析才是真正的一把手工程。分析的使命,在于改善決策。決策的第一責任人,也就是企業(yè)最高層管理人員。國企,尤其是大型央企,職業(yè)經(jīng)理人體系并不完善,董事長、總經(jīng)理級別的任命是由組織部門而不是經(jīng)濟部門來決定的。“講政治”的人事任命體系決定了企業(yè)決策的復雜性和特殊性,科學管理方法和決策手段的推廣,完全取決于企業(yè)最高領導人本身對于這些手段的認可程度。
另外,數(shù)據(jù)分析帶來的不僅僅是分析軟件和分析方法論,更需要決策、運營進行相應的改善與調(diào)整,我們通常稱之為“變革”。 任何變革都會帶來相匹配的風險與收益。國企的權力架構(gòu)和民企、外企非常不同,哪怕總經(jīng)理決定了要變革,還得征求企業(yè)內(nèi)部各路權力部門的認可與接受,變革的難度導致了我們通常看到和聽到的“轉(zhuǎn)型極其艱難”,“身為大家長要對幾十萬張嘴負責”等煽情苦情的自我表白。不要說數(shù)據(jù)分析,就連開除幾個績差員工,一不小心就要得罪人,嚴重了還要危及烏紗帽,改革談何容易。
相比之下民企和外企在這方面的轉(zhuǎn)變要敏捷、迅速很多。比如蘋果,很多年前就開始全球范圍導入JMP數(shù)據(jù)分析平臺,在我們的跨國團隊的幫助下從搭建數(shù)據(jù)分析能力、規(guī)范數(shù)據(jù)分析流程、導入高級數(shù)據(jù)分析方法、直到生產(chǎn)與研發(fā)環(huán)節(jié)的數(shù)據(jù)分析全球標準化等工作。整個過程長達數(shù)年,涉及到龐大的機構(gòu)、人員、方法、流程的轉(zhuǎn)變,卻平穩(wěn)有序。其間還發(fā)生了Steve Jobs辭世,新任CEO上臺等足以中斷一切的重大企業(yè)事件,但導入數(shù)據(jù)分析能力這一過程絲毫沒有受到任何影響。
2.企業(yè)的運營能力儲備
能力儲備也是個關鍵要素。哪怕管理層決心一致,雄心壯志,重大變革能否落地,還得取決于團隊能否升級與被變化。意志力盡管重要,體能卻是個關鍵。數(shù)據(jù)分析對于參與者的統(tǒng)計、概率、數(shù)學、計算機、業(yè)務理解等幾個方面的能力要求甚高。盡管“能力是可以培養(yǎng)的”,但是我們在國內(nèi)這么多年的眾多數(shù)據(jù)分析導入項目中,面臨最多的挑戰(zhàn)就是人員培訓和流程變革。
以電信運營業(yè)為例,BOSS系統(tǒng),各種業(yè)務系統(tǒng)和數(shù)據(jù)倉庫搭建了許多年,數(shù)據(jù)分析對于客戶行為的理解與促銷產(chǎn)品的層出不窮也使得這個行業(yè)的數(shù)據(jù)分析應用遠遠超過絕大多數(shù)其他行業(yè)。但電信業(yè)在大規(guī)模導入數(shù)據(jù)分析方面面臨的首要問題,仍然是專業(yè)人才儲備以及與數(shù)據(jù)分析有關的規(guī)章制度、決策流程與文化體系的建立。
我們在市場上看到更多的,是IT部門主導的數(shù)據(jù)分析項目。項目名稱是數(shù)據(jù)分析,而內(nèi)容仔細一了解,往往都是數(shù)據(jù)倉庫+企業(yè)報表。不是傳統(tǒng)財務三表,而是用于展現(xiàn)核心KPI的圖表。對“數(shù)據(jù)分析”不了解,把報表和制圖當成“分析”,是這一現(xiàn)狀的根源。
3.市場環(huán)節(jié)與競爭壓力
不同企業(yè)對市場競爭的變化是非常不同而有趣的。比如三桶油,建立競爭力的方法,在于找油田、收購加油站,利用壟斷性政策優(yōu)勢抬高行業(yè)準入門檻。三大電信運營商,若干年前曾經(jīng)有子公司互相攻擊,甚至發(fā)展到人員斗毆,割斷對方光線網(wǎng)絡的事件。而華為與中興的競爭,若干年前除了口水仗,還有互相挖對方技術團隊。
政策性壟斷行業(yè),盡管有壓力,但是在提升生產(chǎn)力和生產(chǎn)效率的手段方面,改變緩慢而低效。 高度市場化領域,比如家電,汽車,消費電子,華工、醫(yī)藥等領域,對以數(shù)據(jù)分析為代表的“高級能力”的接受程度則高了不少。
綜上所述,我國企業(yè)界對于數(shù)據(jù)分析的應用仍然停留在個別行業(yè)與個別應用的階段。不過,盡管導入數(shù)據(jù)分析的過程是如此艱難而挫折,我仍然認為,隨著我國各行業(yè)市場化進程的推動,隨著互聯(lián)網(wǎng)、數(shù)據(jù)分析技術不斷對傳統(tǒng)產(chǎn)業(yè)的顛覆過程,“數(shù)據(jù)分析”或者“大數(shù)據(jù)分析”遲早會成為中國企業(yè)界突破藩籬的關鍵手段。
數(shù)據(jù)大不大其實一點也不重要
只要是數(shù)據(jù),里面必然有故事。與其在能力毫不匹配的情況下片面追求大數(shù)據(jù),還不如立即行動起來,從手頭、身邊保有的小數(shù)據(jù)當中提取價值,進而為真正的大數(shù)據(jù)時代的數(shù)字化決策打下基礎。
從微觀角度來看,我們以中國零售及消費品行業(yè)為例,看看數(shù)據(jù)分析在這一領域的應用現(xiàn)狀:
1.企業(yè)內(nèi)部采用的分析手段是非標準化的,零散的—--例如把圖表當分析;
2.更多地關注數(shù)據(jù)獲取和管理,而不是開展面向客戶的預測性建模與數(shù)據(jù)挖掘。前者是IT工作,后者才是從數(shù)據(jù)里獲取價值的過程。
3.尚未在公司真正地運行或者構(gòu)建持續(xù)的分析能力、分析流程和與數(shù)據(jù)分析有關的業(yè)務與管理決策機制。
而根據(jù)我們?yōu)橹袊髽I(yè)提供JMP數(shù)據(jù)分析戰(zhàn)略拓展與項目支持的多年經(jīng)驗,我們的建議是:
1.從項目級別的數(shù)據(jù)分析應用開始,逐漸現(xiàn)成項目組級別的標準化分析流程與業(yè)務決策制度。借助項目拓展出有基本分析與應用能力的團隊;
2.將項目分析經(jīng)驗擴展到部門級別,拓展 數(shù)據(jù)分析—價值獲取—業(yè)務決策 這一價值鏈。 根據(jù)部門級數(shù)據(jù)分析應用的需要來開展數(shù)據(jù)獲取和管理。借助部門級引用導入拓展出數(shù)據(jù)分析與業(yè)務決策的流程,以及統(tǒng)一、先進的數(shù)據(jù)分析平臺與業(yè)務實踐庫。
3.從部門級到企業(yè)級應用,縱橫兩個維度都在拓展,需要企業(yè)管理層的高度參與與制度支持,推廣基于數(shù)據(jù)分析為核心的文化與模式轉(zhuǎn)變,建立支撐這些變化的長遠的數(shù)據(jù)分析戰(zhàn)略
4.至于數(shù)據(jù)是不是夠大,是不是需要“云計算“,全看業(yè)務需要而定!